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SECTION I

INTRODUCTION

Almost every new aircraft with fly-by-wire or command augmentation
in the roll axis has encountered either Pilot Induced Oscillations (PIO)
or roll ratchet (or both) in early flight phases. PIO has typically
been associated with high gain, neutrally stable closed-loop pilot-
vehicle control oscillations with a frequency of about 1/2 Hz (3 rad/
sec). The "roll ratchet" has been somewhat more obscure and idiosyn-
cratic, appearing most often in rapid rolling maneuvers. Ratchet fre-
quencies are typically 2-3 Hz (12-19 rad/sec). Figure 1 illustrates
this seldom recorded phenomenon. The frequency alone indicates that the
PIO and ratchet situations are different phenomena, yet both clearly

involve the closed-loop pilot/vehicle system.
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Figure 1. Roll Ratchet During Banking Maneuver



From the earliest studies on the interaction between the human
pilot's neuromuscular system and aircraft control devices (e.g., Refs. 1
and 2) the presence of.a neuromuscular system limb manipulator dynamic
resonance peak at 14-19 rad/sec has been well known. In Ref. 3 the
neuromuscular system characteristics are cited as "exceptionally impor-
tant and critically limiting in such matters as

® control precision where limited by the pilot's
neuromuscular system dynamics.

o effects of control system nonlinearities, includ-
ing their connections with control system sensi-
tivity requirements."
Reference 4 and other summaries place great stress on the importance of
considering these characteristics even though this frequency range of
major activity may be well above the bandwidth associated with the

"usual" control task.

It is becoming more and more apparent that modern, high performance,
high gain, command response flight control system bandwidths may be
encroaching on the neurological system. Advances in flight control
system fly-by-wire technology permit new manipulation devices, for
example force sensing sticks, at the pilot output/effective-vehicle
interface. These have thus far been generally successful in applica-
tion, but have introduced or enlarged some pilot-vehicle flying quali-
ties problems. Particular problems include:

® high roll control sensitivity and PIO's in preci-
sion maneuvering;

® roll ratchet or jerkyness in otherwise steady
rolling maneuvers;

© sensitivity to the way the pilot grips the stick
or to location of his hand/arm support;

® effective time delay associated with stick fil-
ters, with attendant increase in pilot remnant;

° biodynamic interactions, e.g., hand/arm stick
bobweight effects.



Attempts to alleviate these effects have involved adjustments in stick
force gradients, filtering, and sensitivity. These have included intro-
duction of various nonlinear elements such as command gain reduction as
a function of pilot input amplitude or frequency (Ref. 5), filter time
constant changes with sense of input (increase or decrease) (Ref. 6),
and different force gradient for right and left roll commands (Ref. 6).
These adjustments have generally involved complex ad hoc empirical mod-
ifications in the course of the aircraft development. Much of this has

been accomplished in flight test with correspondingly large cost.

Other modifications have included reverting from stick force sensing
to displacement sensing (Ref. 7) to take advantage of the natural
filtering of the associated mechanical systems. This approach may
involve increased complexity in the manipulator and feel package due to
the necessary pivots, detents, springs, dash pots, etc., but the dynamic
lag of the quasi-linear elements can be compensated for by reducing
other intentional forward path filter elements. Furthermore, recent
flight experience (Refs. 8, 9) has suggested that the pilot may not be
as sensitive to this feel system lag contribution as he is to other
downstream lags from electronic filters, computational delays, etc.
This has led to some controversy (Ref. 9) concerning intent and inter-—
pretation of the response time delay criteria of the current flying

qualities specification (Ref. 10) and is discussed in the next section.

Thus there is a need to revisit and expand the earlier neuromuscular
system experimentation with a focus on now practical flight control
system configurations in order to quantify possible interactions between
these and the neuromuscular system. The result should provide
manipulator/flight control system design guides and criteria to minimize
roll control problems. A first step was taken in the Ref. 11 investiga-
tion of side-stick force sensing and the interaction with the neuro-
muscular system. The experimental program with results documented

herein was taken to further satisfy these goals.

In the section which follows, a fairly broad and simplified view of
some pertinent manual control considerations are presented as background

for the experiment. These include the pilot/controlled—element



crossover model and the basic human operator subsystems of particular
interest (arm neuromuscular subsystem model, limb/manipulator and feel
system interaction, etec.). This sets the stage for definition of exper-—

iment setup and goals which is presented in Section III.

The experiment encompassed some 48 manipulator/filter/aircraft
configurations involving 320 runs by two subjects. Key findings are
summarized in Sections IV through VI. Section IV concentrates on the
displacement side-stick experiment results and compares these with the
Ref. 11 force sidestick results. Attention is focused on control band-
width, excitement (peaking) of the neuromuscular mode, feel force/
displacement gradient effects, time delay effects, etc. Section V is
devoted to experiments with a center-stick in which force vs displace-
ment sensing, feel system lag, and command prefilter lag influences on
tracking performance and pilot preference are investigated. Results in
these two sections are summarized in numerous plots which are intended

to serve as guides in the design of future control systems.

Section VI concentrates on extraction of dynamic models for the
pilot and closed-loop arm/manipulator/feel system from the describing
function data obtained in the Section V experiments. Parameters suit-

able for detailed models and for the simple crossover model are derived.

Section VII summarizes the findings and conclusions. Details con-
cerning the manipulators, feel gradients, etc. along with run logs and

data summaries are presented in the several Appendixes.



SECTION II

BACKGROUND

In the preceding Ref. 1l study a fixed-base simulation was performed
to identify and quantify interactions between the pilot's hand/arm
neuromuscular subsystem and various effective controlled element aspects
representative of typical modern fighter aircraft high-response, roll-

rate-command control system mechanizations. 1In particular:
® force-sensing side-stick type manipulator
® command augmentation prefiltering
@ flight control system effective time delay

The simulation results provided insight to high frequency PIO (roll
ratchet), low frequency PIO, and roll-to-right control and handling
problems previously observed in experimental and production fly-by-wire
control systems. The simulation configurations encompassed and/or
duplicated several actual flight situations, reproduced control problems
observed in flight, and validated the concept that the high frequency
nuisance mode known as 'roll ratchet" can derive from the pilot's own
neuromuscular subsystem. The results demonstrated that roll ratchet
tendency, difficult to detect in fixed-base simulation display or time

traces, 1is readily apparent from application of frequency response

spectral analysis techniques to the experimental data with adjustment
for the pilot's motion sensing neurological apparatus. Results show
that force-sensing sidestick manipulator force/displacement/command
gradients, command prefilters, and flight control system time delays,
need to be carefully tuned to minimize neuromuscular mode amplitude
peaking (roll ratchet tendency) without restricting roll control band-

width (with resulting sluggish or PIO prone control).

One means of reducing control sensitivity problems and roll ratchet
tendency in the F-18, X-29, and other aircraft, has been to replace
stick force sensing with stick displacement sensing. This results in a

natural smoothing (filtering) of the command input via the manipulator



dynamic elements. This also brings into play a different set of recep-
tors in the pilot's hand/arm neuromuscular subsystem. Results obtained
from the X-29 aircraft flight test (Ref. 8) also cast doubt on the
response time delay criterion of the flying qualities specification,
MIL-F-8785C. This specification states that the effective time delay
between application of force at the manipulator and appropriate vehicle
response shall not exceed 0.1 sec for Level I and 0.2 sec for Level II
flying quality ratings. Due to the use of stick displacement sensing
and command prefiltering in the X-29 plus the presence of computational
time delay, surface actuation and aircraft lags, etc., the total effec-
tive time delay is predicted to produce Level 11 pilot ratings. However
the aircraft is rated a solid Level I in flight. If the feel system
dynamic delay is excluded from the effective time delay calculation,

Level 1 response is predicted.

The question raised is whether the dynamic lag of the feel mechanism
is transparent to the pilot (and therefore not to be included in the
calculation of forward loop effective time delay, or alternatively, the
specification criteria to apply from the source of the electrical com-
mand —— force or displacement) or whether the specification criteria is
too stringent and should be relaxed to allow for the dynamic lag contri-

bution of the displacement mechanism and feel package.

The relative merits of stick displacement command versus prefiltered
stick force command have not been quantified in terms of effective time
delay, maximum control bandwidth, neuromuscular peaking, low and high
frequency PIO tendency, etc. The goal of the experimental program
reported herein is to provide such information, to compare results with
the preceding force sensing investigation, and to provide design
guides/tradeoffs for minimizing roll control problems in future high

performance aircraft.
A. SOME SIMPLE PILOT/VEHICLE CONSIDERATIONS

A block diagram for a general compensatory control situation showing
the basic human operator subsystems is presented in Fig. 2 (from

Ref. 2). The major elements are the controlled element dynamics (Yc)’

— e
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the manipulator dynamics, and the human operator which encompasses the
central sensory, equalization, and neuromuscular (N.M.) command ele-
ments, the muscle actuation dynamic element, and the various N.M. force

and displacement feedbacks.

Simple tracking task pilot model forms and associated pilot vehicle
system properties begin with the ideal crossover model of Fig. 3 (see
e.g., Ref. 4). In this model the pilot adjusts his dynamic characteris-
tics so that the open—loop pilot-vehicle dynamics are approximately K/s
over the frequency band immediately above and below the gain crossover.
The prescription for K/s-like controlled element dynamics in the region
of pilot vehicle system crossover as an often desirable form stems from
the fundamental feature of human dynamics that no pilot lead is then
required to establish good closed-loop dynamics over a wide range of
pilot gains. The basic recipe is almost invariably conditioned by such
statements as "in the frequency region about crossover." Such state-
ments are made to restrict the form of the pilot model to that required
only in the crossover region. In particular, the cases covered are such
that an effective time delay term in the pilot model is an adequate
approximation to the high frequency effects. The model also indicates
that in full attention tracking operations the pilot will adjust his
gain to offset any variation in controlled element gain in order to
maintain a nearly fixed control system bandwidth. Thus the full atten-
tion closed-loop bandwidth w, (identified as the crossover of the 0 dB
gain line with the K/s amplitude plot) is independent of the controlled
element gain. Furthermore, the pilot tends to keep the product of the

crossover frequency and the task RMS error, w,0,, constant.

In the crossover model the exponential term with time delay, T,
approximates all the lag contributions due to pilot and vehicle high
frequency dynamic modes. The effective time delay is a function of,
among other things, the force/displacement characteristics of the mani-
pulator. As shown in Fig. 3, an isometric (force) stick results in less
lag than does an isotonic (free moving) stick. Past experimentation has

identified the difference to be approximately 0.1 sec (e.g., Ref. 4).
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In Fig. 3 if the pilot gain were set at the value represented by sz
with an isowmetric stick, the bandwidth would be indicated by w.p and
would result in a system stability phase margin #y9, and gain margin,
GM. 1If this same gain were employed with the isotonic stick, the phase
margin would be 0, and a low frequency continuous oscillation (P10)
would result. This oscillation can then be alleviated by the pilot
reducing his gain to the value represented by Kpl and accepting the
reduced bandwidth. Thus Fig. 3 can be used to demonstrate the common
low frequency PIO problem which generally occurs in the vicinity of
0.5 Hz and which is relieved by reducing pilot gain. Note that in the
crossover model an w, of 4 rad/sec corresponds to T = /2w, * 0.4 sec

for the total pilot, control system, aircraft, etc., latency.
8. THE NEUROMUSCULAR SYSTEM MODEL

As previously noted, early studies on the neuromuscular system
(e.g., Ref. 1 circa 1968) noted the presence of a neurvmuscular system
or limb-manipulator peak at 14-19 rad/sec, well past the usual "cross-
over region." The effects of various restraints on the limb/
neuromuscular system are described in detail in Ref. 2. Figure 4 (from

Ref. 2) shows closed-loop neuromuscular system model fits to pilot/ con-

[

trolled-element describing function ueasurements for pressure and fre
woving manipulators. An important part of the neuromuscular dynamics in
cach case is a peaking quadratic mode with damping and natural frequency

of

SJANIPULATOR NM/L DYNAMICS
Free Moving [0.07, 17]
lsometric or Pressure (0.138, 18.6]

The experiments which allowed identification of these wodes used forciang
functions having a low power shelf extending to higher frequencies than
anormally utilized in tracking tasks. The human pilot describing func-
tion data of Fig. 5 from Ref. 12, provides an example of the range of
frequencies needed to completely define the resonant peak. Note in

Fig. 4 that there is a second neuromuscular mode for the pressure

10
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manipulator which is approximated by a first-order lag break at 11.8
rad/sec. This mode is also somewhat dependent on the nature of the
manipulator restraints (Refs. 13 and l4). The free moving manipulator
results in a second, highly damped second-order mode at about 27

rad/sec.

The reason that the neuromuscular actuation system dynamics differ
when the manipulator restraints are changed is physiological -- the
neuromuscular apparatus involved depends on the restraints and. limb
movenents. While greatly oversimplified, the neuromuscular actuation
elements of the human may be viewed in Fig. 6 as a two loop system. The
inner loop feedback principally involves wmuscle spindle receptors (and
Golgi) with short pathways directly to the spinal level and back to the
musculature. Viewed from the output end this loop is primarily sensi-
tive to forces, and because of the short neural pathways the time lags
of information flow are small. The effective bandwidth of this loop

can, therefore, be quite high. The second or outer loop includes joint

Retinal and
Central .
Equalization Musche/h:ar;:::;ulator
———— e inal Cord ynam ,
Displa L ] Sp'-rf _o_r Manipulator
Pt | l r } Position
lnpm | N I X -K,e"%* D
l'(ee-rcs —D-'I-E} T : —3 1 o=t C i
I A+ I I At 1 (I+TNs)<I+——°-s+w2)
| | b
o |
I : I Spindle Feedback
I ~TenS
K +Zgple %
I l_ —— I Hsp= SP(S SP)
l_ _J (S"’Psp)
Effective
Joint Sensor Feedback
Hy=K,e ;T s

Figure 6. Neuromuscular Subsystems for Free-Moving and Pressure
Manipulators and Central Equalization for Rate Dynamics
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and other (e.g., peripheral vision) receptors as major feedback
elements. Their neural pathways, and associated delays, are longer,
leading to a lower outer loop bandwidth. Note that this simplified
model does not include dynamic elements associated with the manipulator
itself and the form of the retinal and central equalization term in
Fig. 6 is appropriate for controlled element dynamics of the form Y, =
Ke/s. If the controlled element differs appreciably from this ideal the

pilot's central equalization can include an additional lead, 1lag, or

both.

Figure 7 (from Ref.2) presents root locus and Bode-Siggy plots show-
ing typical closed-loop N.M. actuation subsystem root migrations for
successive closures of the Fig. 6 inner (spindle, force) and outer
(joint sensor, displacement) feedback loops. Increasing force or ten-
sion in the inner loop increases the frequency but decreases the damping
of the complex mode and decreases the inverse time constant of the first
order mode. Closure of the joint displacement loop results in a slight
decrease in the complex mode frequency and further decreases mode damp-
ing. Peaking of the closed-loop N.M. mode increases with increasing

joint displacement feedback gain.

In isometric (force-stick) manipulator conditions, there is little
or no joint movement, so the inner loop elements should be dominant.
With isotonic (free-moving stick) conditions, on the other hand, the
joint receptors are major elements. As already indicated in connection
with Fig. 3 the net difference, in terms of an effective latency, is

approximated at low frequencies by a difference in effective time delay

of about 0.1 sec.

If we now employ the Fig. 4 detailed model of the neuromuscular
system (instead of only approximating its phase lag contribution as in
Fig. 3) and superimpose it on the controlled element K/s as in Fig. 8,
we see an open—loop resonant peak inthe 2 to 3 Hz frequency range due to
the neuromuscular system. The correspondence of the neuromuscular/limb
quadratic mode numerical values and roll ratchet frequencies is very
unlikely to be a coincidence. So, the neuromuscular/limb mode clearly

should be taken into account in the analysis of roll ratchet. Since the

14
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Figure 8. Bode Amplitude Ratio Plot for Neuromuscular
System Contribution to Roll Ratchet Potential

primary effect is a resonant peak from which "Gain Margin" might be
measured, it is quite apparent that these properties will be of central
importance for high gain situations. While the "Gain Margin" shown in
Fig. 8 indicates the magnitude difference between the wy peak and the O
dB line, the phase at or near this frequency may differ appreciably from
that required for instability. Thus when the '"Gain Margin" shown is
zero only one of the two conditions for instability may be satisfied.
Consequently this is not necessarily a true gain margin in the conven-
tional sense. It does, however, indicate a resonant tendency contri-

buted by the pilot.
C. LIMB ACTUATION/FEEL SYSTEM INTERFACE

In the world of real aircraft, control manipulators (sticks) are not
pure isotonic or isometric devices. Even the F-16 force stick has
limited movement. The reason for this is to provide the pilot with some
predetermined "feel" relating to aircraft state, mission task, comfort,

etce These feel systems generally involve stick displacement response

16



to force application through a spring-damper (dash-pot) type arrange-
ment. They also incorporate nonlinear elements such as detents, break-
outs, stops, etc. Detents and breakout are incorporated around stick
neutral to provide positive centering and minimize inadvertent stick
inputs due to vehicle motion, turbulence, cross axis coupling, etc.
These nonlinearities are kept as small as possible and once overcome,

the stick/feel system can be modelled by 2nd order dynamics.

The limb-actuation, feel system model including the linear elements
is shown in the block diagram of Fig. 9 allowing for the two types of

manipulator sensing (force or displacement).
1. Force Sensing

Closing the muscle actuation/spindle feedback loop produces the

effective inner loop transfer function

If the manipulator is fixed (no displacement) this simple transfer func-
tion then reflects the pilot's N.M. subsystem. However if stick dis-
placement is incorporated through a feel system, the feel dynamics are
encompassed in the joint receptor feedback path and contribute to the
effective N.M. system as shown in Fig.10. The pilot/manipulator closed

loop transfer function then is of the form

s 2gpgs (s 2, -1,
r o, K (1 + PSP)[1 + s + \‘*FS) ]e P
e ) 2gys s 2 25hgs s <2
(1 + Tige) [+ s () 0+ i+ ()]

The feel system contribution is seen to produce a complex pole/zero
dipole. The residue of this dipole depends upon the separation and
hence effective loop gain. Any lag or delay contribution to the effec—
tive pilot dynamics (and hence transparency to the pilot) will depend

upon the location of the feel system dynamics with respect to the N.M.

17
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Figure 10. Closed-Loop Manipulator System With Force Sensing

system (ie., lower or higher frequency) and dipole residue. If the feel
dynamics are well above the N.M. mode and the stick displacement small,
then the effective closed-loop dynamics reduce to the third order noted

earlier.
2. Displacement Sensing

When displacement sensing is employed the feel system dynamics
become a part of the forward loop in Fig. 9 and the pilot/manipulator

closed loop transfer function is of the form

S = TyS
Kp (1 + Psp)e P

Gl s 22 ) P e 2R )

oo

] 1
WFS WrS
The feel system then becomes a direct contributor to the forward loop
lags. A question remains however as to whether this lag is partially or
totally compensated for by a change in the pilot's central equalization
(lead generation or decrease in latency) and therefore is transparent to

the pilot. If this should be the case then there is room for argument
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that the flying qualities time delay criterion should not be referenced
to force application but rather to manipulator displacement. On the
other hand, past experimentation (e.g., Fig. 4) has indicated an
increase in pilot central latency with pure displacement (inertia)
manipulators. This would portend a compounding effect for pilot/feel-
system lags with displacement sensing. Thus the need for experimenta-

tion to resolve as many of these issues as possible.
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SECTION III

EXPERIMENT GOALS AND SETUP

A. EXPERIMENT SETUP

The experimental setup is shown in block diagram form in Fig. 1ll. For
the greater part it is identical to that employed in the Ref. 11 experi-
ments. A roll tracking task is used in which the pilot matches the bank
angle of his controlled element with that of a "target" having pseudo-
random rolling motions. The random motions are obtained via a computer
generated sum of sine waves. The error is presented as an Attitude
Director Indicator (ADI) type display with a rolling reference line
(target) implemented on a circular CRT (Fig. 12). A grid was available
in the background for estimating angular deviation of the reference line
and a prominant aircraft symbol was available in the foreground. The
pilot attempts to null the error by applying force to the manipulator,

the output of which becomes the command to the controlled element, Yc‘

The controlled element consisted of a classical airframe roll trans-
fer function (Y¢) with time delay and an optional command filter (Ycp)
of the form shown in Fig. 1ll. Y¢ approximates a high gain roll rate
command system. The lag parameter (T) may be considered to be the
effective roll subsidence time constant or a first order flight control
system prefilter (between the pilot's stick command and the flight con-
trol system), whichever is larger. For very small values of T the pure
time delay may be a realistic approximation to digital flight control
system sample and hold dynamics. More generally it is a low frequency
approximation for all the high frequency lags in the system which are
not covered by the first order lag T. The parameter values for T and 1
used in the experiment are generally consistent with values that would
be present in systems designed to be Level I on the basis of flying
qualities specifications. Thus, the parameter values used for Y¢, in
the main, should produce excellent effective controlled elements provid-

ing the gain is appropriately adjusted.
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An optional response command 2nd order prefilter was incorporated
for some of the experiments so that the manipulator feel system and com-
mand prefilter dynamic lag contributions could be interchanged. In this

manner it was possible to investigate pilot sensitivity to location of

lags within the forward loop path.

The manipulators were McFadden force loader systems used in many
aircraft research and development simulations. Two stick types were
employed (Table 1). One was a right hand mounted side stick. Three
different force gradients which fairly well encompassed those used in
other experiments (Refs. 15, 16) were evaluated with this manipulator at
one set of feel dynamics. The second stick was a conventional fighter
type center stick. Two different sets of feel system dynamic character-
istics were evaluated with this stick at one representative force
gradient. Both displacement and force sensing were available as output
from the stick electronics. Plots and time traces of the feel charac-

teristics together with details of their mounting are given in

Appendix A.

TABLE 1. STICK/FEEL SYSTEM CONFIGURATIONS:

SIDESTICK YFS1 YFSZ YFS3
(#/deg) 1.22  0.65 0.33
(deg/#) 0.82 1.53 3.1

wpg (rad/sec) 31.4 22.4 18.0

Zrs 0.7 0.6 0.6

Breakout (#) 0.75 ——=—~—mmm—mmm >
CENTERSTICK Yrs,  Yrsg
KFS (#/1n) 4 4
WFS 26 14
CFS 0.7 0.7
Breakout (#) 1.0 1.0
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Analog signals from the manipulator sensors were passed through to
the controlled element, resident in an analog computer. The controlled
element roll response was in turn passed through an A to D counverter to

a digital computer where Y Yc describing functions and various perform-

ance measures were computid using STI's Describing Function Analyser
(DFA) program. The computations were essentially on-line and printed
out at the conclusion of each run. Some 380 data runs were accomplished
which provided a suitable data base from which to determine or identify

the various interactions of interest.
B. DISTURBANCE (TARGET) INPUT FUNCTION

Key aspects of the experimental program were that the describing
function measurements must cover the limb-neuromuscular peaking fre-
quency region, and the forcing functions should emphasize good data in
the neuromuscular subsystem region. The experimental runs were accom-
plished using the summation of sine waves presented in Table 2. This
input function was scaled to give an rms disturbance of 18.60 deg roll
over a run length of approximately 27 sec. There was an approximately
11 sec "warm—up" and 1.5 sec "cool-down'" period at the beginning and
end, respectively, of each run where no data is taken by the DFA. This
is necessary to allow for desirable initial conditions to be met before
starting the describing function analysis and to assure the run length

covered a full cycle of the lowest frequency sine wave.

TABLE 2, ROLL TRACKING FORCING FUNCTION

Sine Wave (i) 1 2 3 4 5 6 7 8 9

Frequency (w;) 0.467 {0.701 | 1.17 [1.87 | 3.51}|7.01|11/2 14.0 18.7

Amplitude (Aj) 15.2 15.2 15.2 | 7.6 13.04}0.76 | 0.38 [0.228 | 0.152

Relzative

Amplitude 1 1 1 0.5 | 0.2 | 0.0570.025 | 0.015| 0.01

6y = TA{ cos w;t (deg)
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C. PROTOCOL

The primary subject (Subject A) completed the whole test matrix. A
second subject (Subject B) was employed on approximately half of the
configurations to provide a set of check results. Subject A is a flying
qualities engineer with previous experience as a military pilot. Sub-
ject B is a flying qualities engineer and licensed pilot with experience
as a test pilot in both simulator and actual flight situatioms (light

and heavy fixed wing plus rotary wing aircraft).

The subjects were required to perform a minimum of three runs at
each configuration before allocating a pilot rating. The Cooper-Harper
Pilot Pating (CHPR) scale shown in Fig. 13 was used. Desired perform-
ance level required extended time periods of less than 1 to 2 deg roll
error and peak errors during reversals of less than 11 deg. Adequate
performance required short periods of 1 to 2 deg tracking error and peak
errors on reversals of less than 22 deg. The background grid on the

display (Fig. 12) was used to judge these angles.

The subjects were instructed to maintain tracking error as small as

possible throughout the entire run.
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SECTION 1V

DISPLACEMENT SIDESTICK AND FEEL SYSTEM

One of the key findings of the previous investigation (Ref. 11) was
that the combination of a stiff sidestick manipulator and force sensing
could contribute to roll ratchet tendency. A principal goal of this
continuing investigation is to determine if the use of displacement
sensing alters the tendency to roll ratchet, and if so, to what extent.
Another goal is to identify handling performance metrics for the roll
control task and to determine the influence of sidestick manipulator,

feel system, and response command characteristics on task performance.

Roll ratchet tendency was related in Ref. 11 to the open-loop Ych
frequency response amplitude ratio and phase lag at the pilot's neuro-
muscular (refered to hereafter as N.M.) subsystem dynamic mode
frequency. Therefore, we will first look at the influence of position
sensing on N.M., peaking tendency, and the system phase lag at that
f requency. Results will be compared with those obtained with force

sensing in Ref. 1l1.

Attention will then be focused on roll tracking with various feel
system force/displacement gradient and response command gains in order
to identify the influence of these design parameters on tracking per-

formance and pilot acceptance.

A. INFLUENCE ON PILOT'S NEUROMUSCULAR SYSTEM MODE

A simple block diagram representation of the effective controlled

element is shown below.

Feel Command Vehicle
System Gain Dynamics
F /K D Pe TS ¢
- FS - Kes Ko ] — -
[0.6,22.4] s(Tps+I)

27



For this series the experimental matrix encompassed:
© Feel gradient, Kgg = 0.33, 0.65 and 1.22 1b/deg

© Command gain, K, = 5 to 20 deg/sec/1lb

© Time delay, T = 0, 0.067, and 0.l sec

2 Roll subsidence, Tp = 0, 0.2, and 0.4 sec
A total of 179 data runs were required to complete this series.
1. Amplitude Ratio Peaking

Amplitude ratio peaking of the N.M. mode was determined by drawing
straight line asymptotes of the effective controlled element (Yc) and

moving the asymptote up or down to fit the Y Yo describing function data

p
points and satisfy the crossover model in the region of gain crossover

as shown in Fig. l4. The amplitude deviation from the asymptote in the
region of 11 to 19 rad/sec is then taken as the pilot's N.M. mode con-

tribution.

Average amplitude ratio deviations obtained with an ideal K/s roll
task across all command gains and two different feel system gradients
(0.65 and 1.22 1b/deg) are shown in Fig. 15. The range of peak readings
obtained are indicated by the bars and the number of runs by the number
above the bar. The neuromuscular subsystem natural frequency is seen to
be in the vicinity of 14 rad/sec for the two test subjects. The peak
magnitude and form seems to be independent of the feel system gradient.
The lone point which disagrees with this observation (1.22 1b/deg
gradient at 19 rad/ sec) was not thought to be significant due to the

relatively small number of runs made with this configuration.

The latter finding is reinforced by the data of Fig. 16 which show
the effects of varying feel system gradient and controlled element time
delay. In essentially, all cases, the neuromuscular mode peak frequency
remains at approximately 14 rad/sec. However, there are some changes in
peak amplitude. Increasing stick stiffness and/or controlled element
time delay may be seen to produce a weak increase in the peaking

tendency.
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The influence of force vs displacement sensing on peaking was
checked with the 0.65 1b/deg feel gradient over the range of time
delays. These results are also shown in Fig. 16. As expected from
theory, an increase in peaking with displacement sensing can be seen,
however the difference is not nearly so pronounced as in the Fig. 4

cases of pure force vs. free moving manipulators.
2. Roll Ratchet Tendency

The Ref. 11 experiment indicated that neuromuscular peaking could
lead to a roll resonance (ratchet) at the N.M. frequency if the 0 db

gain line of the Y Bode plot cuts through the N.M. mode amplitude

PYC
peak while the phase angle is very close to 180 deg. To satisfy the
phase criteria, a first order correction to the measured describing
function phase was required in Ref. 11 to account for the difference
between no motion and the rapid rolling motion in flight where the
phenomenon actually occurs. The correction is derived from Ref. 4 where
it is shown the pilot's angular motion sensing neurological apparatus
acts very much like a rate gyro inner loop in the frequency range near
and slightly above crossover. This inner loop, present when super
threshold rolling velocities are imposed on the pilot, has the effect of
reducing the effective time lags in the pilot's visual input/manipulator
output response. The reduction can be as much as 0.1 sec from the
fixed-base data. When a phase lead of 0.lc is made in Fig. 14 (which in
effect '"bends" the 180 deg phase 1line with respect to the Ych
describing function data points as shown by the solid 1line) it is
apparent that the phase angle at the N.M. mode is still considerably
greater than 180 deg. The rapid phase roll-off in YPYc is due to the
feel system 2nd order mode lag contribution (in this case -at 22.4
rad/sec) and to the low damped N.M. mode itself. Thus, in spite of the
increased N.M. peaking tendency, shown in Figs. 15, 16, we would expect
no roll ratchet tendency with this stick displacement sensing response-
command system. This was indeed the case with all such configurations

investigated.
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3. Comparison Between Displacement And Force Sensing

It was noted above that there is slightly greater peaking of the
N.M. mode with displacement vs force stick sensing. Further comparison
between the two is made in Figs. 17, 18, 19. Figure 17a presents the
1.22 and 0.65 1b/deg feel gradient displacement sensing cases of Fig. 16
compared to the almost identical configurations from the Ref. 11 experi-
ment with stick force sensing (17b). While the N.M. mode peaking
generally may be greater with displacement sensing the difference is

negligible.

Figure 18 allows direct comparison of typical describing function
data for the same controlled element dynamics with displacement vs force
sensing being the only variables. The most notable difference is the
more rapid Ych phase roll-off above roughly 5 rad/sec with displacement
sensing (as predicted by Eq. 3) which reduces the roll ratchet tendency
as noted above. But, it is also worth noting, that this additional
phase lag results in the open—loop YPYc phase data points crossing the
180 deg line at a lower frequency. This could result in the pilot being
forced to reduce his gain in order to maintain adequate gain and phase
margins, thereby resulting in a slightly lower control bandwidth. This
decrease in bandwidth would in turn result in degraded tracking perform—

ance. It could also result in the pilot gemnerating slightly more lead

to offset this added lag in the region of intended crossover, thereby

maintaining control bandwidth and hence performance at the expense of

extra pilot compensation.

Figure 19 presents survey plots of predicted roll ratchet tendency
across different K, and Ty combinations for the sidestick manipulator/
feel configurations investigated in this and the Ref. 11 force sensing
experiments. The open symbols represent no roll ratchet tendency, the
filled symbols reflect roll ratchet. The dashed line boundary separat-
ing ratchet and no ratchet is derived from the Ref. 16 NT-33 flight test
data also shown in Fig. 19. It appears from this data that the boundary
could either be moved to the right by a considerable amount are limi-

nated entirely by use of displacement sensing.
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Figure 19, Roll Ratchet Tendency With Variation of Roll Lag

and Command Gain; Displacement vs Force Sensing
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B. INFLUENCE ON CLOSED-LOOP TRACKING PERFORMANCE

Tracking performance metrics obtained directly from the describing
function measures are rms roll error (oe) and crossover frequency (wc).
These are inversely related, in that, generally for systems which obey
the crossover law, higher crossovers result in lower rms error. Another
measure obtained by the analysis software is rms manipulator amplitude
(stick displacement or force). This measure is inversely related to
command gain (Kc)' Combined, the rms error and manipulator effort con-
stitute a measure of tracking workload. A final measure is pilot rating
(CHPR), which is the pilot's opinion of the overall system (pilot and

controlled element) closed-loop performance and task workload.

As noted previously, there were 3 runs per configuration, with the
configurations being presented to the subjects in a random order. The
subjects were highly trained in the tracking task, having accomplished
several hundred runs each. However, the first run for each configura-
tion often resulted in the subject adapting to the new effective con-
trolled element dynamics by varying his control technique (gain, lead,
lag) during the course of the run. This is evidenced by scatter in the
first run data points. The second and third run data would then be
quite consistant. Thus, only data from the last two runs for each con-

figuration are included in the results reported herein.
l. Bandwidth

The performance measure for bandwidth is crossovér frequency (wc).
It was found in the Ref. 11 stick force sensing simulation that tracking
bandwidth remained relatively constant for command gains above 10 deg/
sec/1b., but decreased linearly for gains below 10 deg/sec/1b. A simi-
lar trend was observed with stick displacement sensing. Fig. 20 pre-
sents a plot of crossover frequency versus command gain obtained for the
1.22 and 0.65 1lb/deg feel gradient sticks over all values of <t and Tre
Boundaries for data from the Ref. 11 experiments are also shown. The
data from Ref. 11 (force sensing) and the new displacement sensing

results show so little difference that all the data points at each
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command gain have been averaged in Fig. 21. This represents a summation
of all values of Tt and roll subsidence, the 1.22 and 0.65 1lb/deg feel
gradients, and force and displacement command sensing. The data means
are represented by the open symbol and the lo range by the lines. The
data show quite remarkable consistancy. It may be noted at the lowest
values of K, that the mean crossover frequency is slightly higher for
force sensing than for displacement sensing. This does not hold true
for higher command gains. However, it was found that the values for the
1.22 1b/deg feel gradient generally lie within the +lo bound from the
overall mean and the values for the 0.65 1b/deg feel gradient (displace-
ment and force) lie within the -lo region. Thus, the stiffer feel gra-
dient results in a slight increase in closed-loop bandwidth, but there

is no significant difference between displacement and force command

sensing.
GENERALLY:
Mean value for Kgg=1.22 lies within +lo value
Mean value for Kgg =0.65 lies within -lo value
SUMMATION OF:
Krs =1.22 and 0.65 |b/deg
8 All values of T and T é':eon
r Force and Displacement sensing
—~ 6}
(&
g st . :
-,‘-6: 4r Force g \_r :
o T Q Z|= d Displ t
3 L a orce and Displacemen
Displacement
| =
0 ] I ] ] ]
o 5 75 10 15 20

Kc(deg/sec/Ib)

Figure 21. Roll Tracking Crossover vs Command Gain
With Force and Displacement Sensing
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It has been established in this and the previous experiment that the
crossover "droop” at low command gain is due principally to a physical
inability on the part of the pilot to overcome the high stick forces and
move the manipulator far enough to generate the required correction
signal in a timely manner. There is also evidence from pilot commentary
that at the high end of the gain scale the problem of PIO begins to
arise and any further increase in command gain may result in a decrease
in crossover. On this basis, it would appear that command gains between
10 and 20 deg/sec/lb may be optimum (subject, of course, to flight veri-

fication).
2. Tracking Error And Pilot Effort

A measure of pilot effort in achieving either desired or best
obtainable performance was selected to be the product of rms tracking
error (0,) and rms manipulator displacement (0.) or force when using
force sensing. This product of performance and effort might be con-
sidered a measure of workload. It will be shown later that this param-
eter correlates well with Cooper—-Harper pilot ratings (CHPR) obtained.
Figure 22 presents a plot of the workload parameter (g X 0.) versus the
reciprocal of the product of crossover (w,) and command gain (Kc). As
should be expected from the crossover model (Ref. 4), this indicates
good correlation between the parameters. Decreasing crossover and/or
command gain results in increasing workload -- or vice-versa. However,
the data also tend to indicate a relative insensitivity of workload,
over the range of 1/(gain x crossover) between about 0.75 and 2 1b/(rad/
sec)z. The data points within this region generally reflect a command
gain of 20 deg/ sec/lb and this may suggest that this gain is suffi-
ciently high that tracking effort becomes minimal and other factors such

as higher frequency time delays begin to dominate.
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Figure 22. Relationship Between Tracking Performance
and Loop Closure Parameters

C. INFLUENCE ON PILOT RATING
1. Command Gain And Feel Gradient Variation

Previous plots indicated the influence of command gain (Kc) on
tracking bandwidth and workload. It is of interest to determine if and
how this may correlate with the Cooper-Harper pilot ratings obtained.
%igure 23 presents a crossplot of CHPR and command gain for the two best
roll subsidence and the three feel system configurations. These data
represent only one pilot subject because only the one was given the
entire matrix of configurations. However, it will be shown subsequently

that ratings were quite consistent between the two subjects.

The trend with CHPR reflects that of crossover (Fig. 20) in that
there is a general degradation with decreasing command gain. Command
gains less than 10 deg/sec/lb were unacceptable for anything other than
a K/s equivalent aircraft. K, = 10 deg/sec/1lb was marginal depending
ubon feel system gradient and roll subsidence time constant. There was
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a general complaint about the stiffest feel gradient (1.22 1b/deg) that
forces were too high and tiring, especially at gains below 10 deg/sec/1b
and at the higher gains there was some tendency to low frequency PIO
which degraded ratings significantly. The 1lowest feel gradient
(0.33 1b/deg) seemed to induce larger stick deflections and required a
high command gain to avoid hitting the stick travel limits in the larger
maneuvers. It therefore, gave the impression of inadequate control
authority, and was downgraded accordingly. Also, this configuration
would not be expected to be acceptable in flight, because it would be
too difficult to avoid inadvertent stick inputs in turbulence. The best

compromise feel gradient was found to be 0.65 1b/deg.
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There was a significant improvement in CHPR in going from a Ty of
0.2 to zero (K/s) with the 0.65 1b/deg stick gradient and higher command
gains. This may reflect a requirement for pilot generated lead and/or a

tendency to oscillation at the higher Tg.
2. Comparison With NT-33 Flight Data

It should be recalled at this point that the response command gra-
dient gain (Kc) generally is not a fixed parameter in a flight control
system, but is changed as a function of stick force or displacement
input. A low response gain is provided around stick neutral to avoid
inadvertent command inputs and/or over control in situations requiring
small precise command inputs. For larger stick inputs as required for
gross maneuvering, the response command gradient is increased to obtain
faster motion response with lower stick force or displacement. In most
instances two or more discrete gradient are employed to cover the range
of flight tasks from air refueling or air-to-air tracking to gross
maneuvers as in air combat. The Ref. 16 flight test in the NT-33 inves-
tigated several response command gradients (Fig. 24) in air-to-air

tracking and gross maneuvering tasks.

FAS,1b

Breakout = 1.0 1b E 5 §

0 20 40 60 80 100 120 140 160
-, deg/sec (Steady State)

Figure 24. Control Force-Response Gains, Up-and-Away Flight (Ref. 16)
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In general the first gradient was dominant in the tracking task and
the second gradient was dominant in the gross maneuvers. One objective
of the test was to select the best gradients. The flight test also
investigated three different feel system configurations: fixed stick,
"small" deflection (1.3 1b/deg measured at the center of the stick

grip), and "large" deflection (0.7 1b/deg).

Figure 25 presents a plot of CHPR vs. K, made up from data for the
1.3 1b/deg stick in Ref. 16. Across the bottom of the figure is a
superimposed guide to the NT-33 first and second command gradients and
associated evaluation tasks. The average pilot rating is identified (X)
along with the range obtained. Also shown in the figure are the ratings
obtained with the 1.22 1b/deg feel configuration (0) in this simulation.
For the region corresponding to the NT-33 lst gradient (tracking) there
is excellent agreement between the two. For command gains appropriate
for the 2nd gradient, the CHPR for our tracking task was downgraded
because of a tendency to PIO. The existance of this PIO tendency in the
tracking task is probably related to the relatively high bandwidth,
closed-loop nature of the task when compared with a relatively open-loop
gross maneuvering task. The "target" which was being tracked did
produce some gross maneuvers (60 deg right to 60 deg left and vice

versa) but the subjects were not required to rate these separately.

Figure 26 presents similar data for the NT-33 0.7 1b/deg ([)) and
our 0.65 1b/deg feel configurations (/). Here the correlation in the
Ist gradient range (only two data points) is not good because in-flight
tracking produced PIO tendencies (Level II) whereas in the simulation at
similar command gains the task was rated Level I. For the gross maneu-
vering range the correlation is much better (Level I for both). This
implies that our subject pilot was able to track the gross and small

maneuvers well with no tendency to PIO.

The data points for the NT-33 1.3 1lb/deg (X) are also shown in
Fig. 26 and interestingly match our simulation results for the 0.65 1b/
deg feel system quite well over the command gain range from 10 to
20 deg/sec/1b. However, the match below 10 deg/sec/1b is not as good as

in Fig. 25.
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Figure 25, Comparison of CHPR vs Command Gain for Flight
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CHPR

Simulation

] | 1

Gradients at center of stick grip
A 0.65 Ib/deg simulation

X 1.30 Ib/deg T-33
(3O 0.70 |b/deqg T-33
All cases Tg = 2 sec

Ref.16

é (OSC and PIO)

1 l

5 10 15

A B

VH H M L
NT-33 Ist Gradient <—-‘—>

(tracking)

20 25 K (deg/sec/Ib)

} } }

H M L

2 nd Gradient
(gross maneuvering)
(Ref.16)

Figure 26, Comparison of CHPR vs Command Gain for Flight
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There are several potential design lessons in these results:

© The fixed base simulation indicated the 0.65 1b/
deg feel to be the best overall force/
displacement gradient but flight results show the
stiffer 1.3 1b/deg feel to be the better. The
difference may well be due to motion effects and
minimization of inadvertent inputs in turbulence,
etc., but may also have been related to the par-
ticular stick design or installation. On the
other hand, a feel gradient somewhere between the
two may offer a better compromise. Such factors
should be checked in flight.

® Flying quality rating degrades very rapidly as
response command initial gradient is decreased
below 10 deg/sec/lb. For Level 1 rating the
initial gradient should be above 10 deg/sec/1lb.

® Flying quality rating does not change appreciably
for 2nd gradient command gains appropriate for
gross maneuvering although there is flight evi-
dence from Figs. 25, 26 that K, = 20 deg/sec/1b
or higher is to be preferred when the stick force
gradient is high.

D. ADDITION OF 2ND ORDER COMMAND FILTER LAG

Using the '"best" feel gradient (0.65 1b/deg) and command gains (10
and 20 deg/sec/1b), a set of 57 additional runs was made with a second
order filter inserted in the command path. The basic purpose was to
determine the effect on tracking performance and pilot rating of such a
command filter tuned to the pilot's N.M. subsystem. For this set of
runs the effective controlled element was as shown by the block diagram
of Fig. 27. Both displacement and force stick sensing were employed.
Thus, four configurations were involved; the force to roll response

equivalent time delay of the four varies from 0.033 sec to 0.207 sec.
1. Influence of Effective Time Delay On Pilot Rating

Figure 28 presents a summary of pilot ratings versus effective time
delay across the four configurations and two command gains (10 and 20

deg/sec/1b). Ratings by the two subject pilots are within one rating

point of each other for each gain and all but one configuration (Dl)'
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Figure 27. Effective Controlled Element Dynamics for
2nd Order Command Tilter Fxneriment With Sidestick
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The ratings show a general degradation with increasing effective time
delay similar to that reported in Ref. 18 for a low stress task. How-
ever, it will be noted that the 20 deg/sec/lb gain fared better than the
10 deg/sec/1b gain by about 1.5 to 2 rating points across all configura-
tions. This trend is opposite that shown in Fig. 23 but is supported by
the flight data of Fig. 26. Thus, it is suspected that the K. = 20
(0.65 1b/deg and Tp = 0.2) data run in Fig. 23 may have been adversly

influenced by some unknown factor.

As a further check on the CHPR differential for the two command
gains, a plot of effective workload (oe x Oé) versus effective 71 is
shown in Fig. 29 for the four configurations. This also shows a dis-
tinct separetion for the two gains. This might be expected since a
doubling in gain should reduce the rms stick input by roughly a factor
of two and this is the case here. 1If the workload parameter is normal-
ized with command gain as shown in Fig. 30 the resulting error measure
is shown to be independent of command gain. Thus, the CHPR rating dif-
ferential between the command gains can be related to amplitude of stick
activity (effort) required. (It also becomes apparent that the pilots
were employing different error criteria in performing their tracking

task. Subject A consistently tracked tighter than Subject B).

The influence of the effective time delay now becomes more clear in
Fig. 30. Displacement sensing added a small increment in tracking error
to that obtained with force sensing, and the 2nd order filter added a
significant increase. If we now eliminate the effect of command gain on
CHPR in Fig. 28 and concentrate on change in CHPR with increasing =t
(referenced to the initial ratings for each subject in each case) we
obtain the plot of Fig. 31. The end result is that addition of the
second order filter at the pilot's N.M. mode frequency to the force
sensing stick produced essentially the same decrement in rating as did
changing to displacement sensing but without the filter (increase in To
is almost the same in both cases). Adding the filter to the displace-
ment seunsed input degraded the rating by about 1 to 1.5 rating poiats.
Obviously, since the use of displacement sensing alone essentially
eliminates any tendency to roll ratchet (Fig. 19), there is little need

for this added lag.
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Figure 30. Command Gain Normalized Tracking Performance Measures
Variation With Effective Time Delay (0.65 1b/deg Sidestick)
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2. Comparison With MIL-Spec Time Delay Criteria

There is some controversy over whether the allowable time delay cri-
terion of MIL-F-8785C should be referenced from the force input to the
manipulator or the resulting manipulator deflection (Ref. 9). Figure 32
presents the average values of rating degradation from Fig. 31 for each
configuration but with an initial CHPR rating selected to be the average
of the two ratings given for t = 0.033 and K. = 20 in Fig. 28. This
configuration was chosen as it is the baseline airframe which received
Level I ratings i.e., Kc was optimal and not a factor in the ratings.
The data presented in Fig. 32a, where the feel system lag is included in
the calculation of the effective time delay, seems to support an
increase in the allowable Levels I and II time delays from the present
MIL-F-8785C limits. In Fig. 32b the feel system lag has been excluded
from the effective controlled element time delay. 1In this case the data

points lie within the appropriate boundaries.

This limited set of data supports the contention that the allowable
time delay criterion should not require inclusion of the feel system
dynamics. If the feel system dynamics are included, it supports an
increase in the allowable Levels I and II time delays from their present
(MIL-F-8785C) limits. It is also worth noting that this data was

obtained with, and is therefore valid for, a sidestick manipulator.
E. SUMMARY

The goals of this experiment were to determine whether stick dis-
placement sensing decreases the tendency to neuromuscular (NM) system
related roll ratchet and to assess the influence of displacement sensing
and related feel system and command filter dynamics on tracking perform-
ance and pilot acceptance. It has been shown that stick displacement
sensing decreases the tendency to NM mode induced roll ratchet due to
the additional forward loop phase lag introduced by the feel system
dynamics. This additional lag, in effect, serves the same smoothing
purpose as the command prefilter lag required with stick force sensing

configurations.
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It was found that displacement sensing does not result in appre-
ciable change in the NM mode frequency (about 14 rad/sec) and amplitude
peaking from that noted previously with force sensing. As with force
sensing, the peak amplitudes tended to increase with stiffer feel gra-
dients (0.65 to 1.22 1b/deg) and increasing effective time delay (up to
0.1 sec). However, this is not as significant with displacement sensing
compared to force sensing because of the concomi tant phase lag contribu-

tion of the feel system in the frequency region near the NM mode.

As with force sensing, tracking bandwidth increased as controlled
element command gain (Kc) increased. The sensitivity to command gain is
quite high for K, less than 10 deg/sec/1b, with bandwidth, tracking per-
formance, and pilot acceptance all degrading rapidly as command gain is
decreased. Performance and pilot acceptance improved slightly with

increasing command gain in the range K, = 10 to 20 deg/sec/1b.

Tracking bandwidth, performance, and pilot acceptance were influ-
enced somewhat by feel system force/displacement gradient. A gradient
of 0.65 1b/deg appeared best for this fixed base tracking task. The

0.33 1b/deg gradient was too weak and allowed excessive stick deflection

‘when trying to follow large changes in target motion. The 1.22 1b/deg

gradient was considered too stiff and tiring. However, under flight
motion conditions, a gradient between 0.65 and 1.22 1b/deg might be more

appropriate.

It was found that use of displacement sensing without command pre-
filtering was rated about the same as force sensing with a second order
command prefilter tuned to attenuate the NM mode. Addition of the
second order prefilter to displacement sensing produced excessive high
frequency lag and degraded handling quality ratings by 1 to l.5 rating
points. Again, there is little or no need for such filtering with stick

displacement sensing.

Concerning the -8785C flying qualities specification for allowable
effective time delay, data from this limited experiment with a side-
stick manipulator supports the Ref. 9 contention that the feel system
dynamics should not be included in calculation of the effective forward
loop time delay or, if the feel system is included, the -8785C criteria

boundaries should be relaxed.
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SECTION V

CENTER STICK WITH DISPLACEMENT VS FORCE SENSING

A NASA DFRF flight test program is planned to be accomplished in the
USAF NT-33 aircraft to help resolve several issues concerning the influ-
ence of force vs. displacement stick sensing, feel system dynamic lags,
and command prefiltering on the roll control characteristics of highly
augmented aircraft. Among the issues is whether the calculated time
delay for the effective aircraft dynamics as viewed by the pilot should
be referenced to force applied to the manipulator (and hence the feel
lag included) as called for in MIL-F-8785C, or whether the feel system
dynamics are transparent to the pilot (and hence not to be included in
the calculated time delay). Other issues pertain to the influence of
roll mode time constant and stick command gain (or sensitivity) on roll

ratchet. Since this simulation preceeds the flight test, one set of

objectives was to:

o duplicate a few typical configurations to be
tested in flight

° preview possible flight results

© obtain describing function and other closed-loop
task performance measures which might provide
insight to results

o suggest possible improvements to the flight
experiments.

This section will be devoted to a description of the configurations
investigated, the influence of force versus displacement sensing on
closed-loop tracking performance and pilot rating, the influence of
interchanging the feel and command filter lag contributions, and finally

an assessment of results based on overall effective time delay.

A. CONFIGURATIONS INVESTIGATED

A block diagram showing the simulation of the feel system, the force

vs. displacement option, the command gain and filter option, the NT-33
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aileron servo effective time delay and simplified augmented roll dynam-
ics (roll subsidence of 0.15 sec.) is presented in Fig. 33. The matrix
of configurations investigated is shown in the accompanying table. The
configurations are coded in the left column with the subscript 2 to
indicate use of the fighter type center-stick. The type of stick sens-
ing is indicated in the second column. Two sets of feel characteristics
were employed: one with the regular NT-33 system second order dynamics
(26 rad/sec frequency and 0.7 damping ratio) and the second with
14 rad/sec frequency and 0.7 damping (to approximate the X-29 aircraft
lateral feel). The latter actually is 13 rad/sec but this could not be
duplicated in the lab. 1In both of our cases the force/displacement gra-

dient was 4 1b/in measured at the top of the stick.

The command filter second order lag and feel dynamics were inter-—
changed in four cases (E2 - HZ) but with the total lag between force
application to the stick and roll response held constant. However the
effective time delay between force input and roll response varied with
the sensed stick input as reflected by the effective time delay shown in

the right hand column.

Roll acceleration time responses to step stick force inputs are pre-
sented in Fig. 34 for the 26 and 14 rad/sec feel system with no command
filter lag (representing configurations C, and F, respectively) and for
the combined feel and filter lags (representing configurations G, and
HZ)' These traces demonstrate the large differences in response char-
acteristics produced by the various lags and the quite sluggish response
which results when both the feel system and command filter lags are in

the command path.

To provide additional comparison between force and displacement
sensing and the influence of low and high frequency feel dynamics, the
second order filter was switched out in four cases (Ay - Dy). Finally,
two command gains were employed (KC of 10 and 20 deg/sec/1b) for each of
the 8 configurations. Accomplishment of this overall test matrix with

the two test subjects required a total of 141 rums.
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A, F 26 - 0.033 0.033
B> F | 4 - 0.033 0.033
Cso D 26 — 0.033+0.055 0.088
D, F 14 26 0.033+0.055 0.088
E, F 26 14 0.033+0.102 0.135
F, D 14 - 0.033+0.102 0.135
Gz D 26 14 0.033+0.055+0.102 | 0.190
Ha D 14 26 0.033+0.102+0.055| 0.190
Figure 33, Effective Controlled Element Configurations

Employed -- Roll Tracking With Center Stick
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B. FORCE VERSUS DISPLACEMENT SENSING

For this comparison, attention is focused on closed-loop crossover
frequency (w.), tracking error (Oé), and pilot ratings as metrics to
identify the possible differences in performance resulting from force

and displacement stick usage in closed-loop roll tracking tasks.
l. Tracking Performance

Figure 35 presents a plot of average tracking bandwidth (crossover
frequency, w,) achieved by each subject pilot for the eight configura-
tions and two command gains. Each data point reflects an average taken
over three runs. The configurations are paired to emphasize any differ-
ence due to the different stick input sensing methods. It is apparent
from this plot that there is no consistent difference due to the type of
sensing. The only clear trend shown is that Subject A consistently pro-

duced a higher crossover which in turn indicates tighter tracking.

This trend is further demonstrated by Fig. 36 which presents aver-
ages across all data points for each subject at each command gain. The
symbols reflect the average and the bars reflect the maximum and minimum
values, respectively. This plot also reveals that both subjects tended
to achieve higher crossover with the higher command gain, however the

difference is more pronounced for Subject A.

The influence of the two different types of stick input sensing on
rms tracking error is shown in Fig. 37 where each data point represents
an average of the rms error measures from three tracking runs. The dif-
ference obtained is quite striking. Tracking error is consistently
greater with the displacement stick. The degradation varies from
approximately 5 to 25 percent. The influence of command gain on track-
ing error is small but it is again apparent that subject A is consis-

tently using a tighter tracking technique.
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2. Pilot Rating

Pilot ratings elicited by the different configurations are summa-
rized in Fig. 38. There are three specific points to be noted from this

plot. First, the ratings given by the two subjects are very consistent,

the average difference being two-thirds of a rating point. Second, the
CHPR ratings tend to reflect tracking error performance and show a pre-
ference for force sensing. Third, with the 10 deg/sec/lb command gain
almost all configurations lie in the Level II handling rating range.

When the gain is increased to 20 deg/sec/lb all configurations with

force sensing move into the Level I range.

In summary, the data show a decided preference on the part of both
subjects for force sensing and the 20 deg/sec/lb command gain with this
center stick. This preference would appear to be due to better tracking

performance.
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C. INFLUENCE OF DYNAMIC LAG LOCATION

The influence of dynamic lag location on tracking performance and
pilot rating may be observed by comparing configurations D, and Eqy
(force sensing) and configurations G, and H, (displacement sensing) in
which the low and high frequency dynamic lags are interchanged between
the feel and command filter locations while keeping the overall forward

loop path lag constant.

1. Tracking Performance

Figures 39 and 40 show the influence on tracking bandwidth and rms
error, respectively. Separate comparisons are made for force and

displacement sensing at each command gain. Results in both figures

Center Stick Ke = 20 deg/sec/ib
al O Subject A % ~
@® Subject B Q\
\
K¢ = 10 deg/sec/Ib \
- A ~ E]\ \\
5 3 D \
3 B~ o
S o Q
2| g \ &
o . Cl {3 N
3 2 © AN 10)
O
| | ! | | | | l ]
14 26 14 26 14 26 14 26 Feel
26 14 26 14 26 14 26 14 Filter
D> Ez Ho Ga Dg Eg Ho Gz Configuration
Nm—— ——— Nm—  ——— A e —

Force Displ. Force Displ.  Sensing

Figure 39. Influence of Dynamic Lag Location on Tracking Bandwidth
(Center Stick)
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Figure 40.

Influence of Dynamic Lag Location on Tracking Error
(Center Stick)

indicate placing the 14 rad/sec lag in the command filter location has a

decidedly adverse effect on these tracking performance measures. The

difference is more pronounced for Subject B than for Subject A. Referr-

ing back to Figs. 35 and 37, it may be observed on the other hand that

there is no adverse effect when the 14 rad/sec feel dynamics are substi-

tuted for the 26 rad/sec feel system with the command filter lag elimin-

ated. These results support the findings of Refs. 8 and 9.
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2. Pilot Rating

|

i Figure 41 shows that pilot ratings are not changed significantly by

i interchanging the 14 rad/sec lag between the feel system and the command
filter locations. This is probably due to the accumulative system lag
being so great as to result in Level II flying qualities in three sets
of comparisons and borderline Level I-II in the fourth. But, referring
back to Fig. 38 it may be observed again that there is no adverse effect
on pilot rating when the 14 rad/sec feel dynamics are substituted for
the 26 rad/sec feel system. This too supports the flight results of
Refs. 8 and 9 concerning the lack of adverse effect on flying qualities

| when a feel system having relatively low frequency dynamics is employed

in the roll axis.
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8 |-

K¢ =10 deg/sec/Ib K¢ = 20 deg/sec/lb
7 L Vel - N N o~
CHPR

6 —

\
50 DO ba C><C) LEVELI

o o -
4- 0O o
3 Gl b &)
\
LEVEL I

2 Ao
| ] l L I I ] I |

14 26 14 26 14 26 14 26 Feel

26 14 26 14 26 14 26 14 Filter

Dz E2 Hg G2 Dz E2 Ho G2 Configurofion
N, s’ N, e’ e e N, e’

Force Displ. Force Displ. Sensing

Figure 41, Influence of Dynamic Lag Location on CHPR (Center Stick)
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D. INFLUENCE OF CUMULATIVE EFFECTIVE TIME DELAY

Having looked at the various direct comparisons between mechaniza-
tional elements, it is of interest to view the results in terms of the
computed cumulative buildup in effective time delay with the different
configurations. The table in Fig. 33 shows this effective delay, from
force application to roll response, extends from 0.033 sec to 0.19 sec

in four nearly equal time increments.
1. Tracking Performance

Figures 42 and 43 present rms tracking error (oe) plotted against
cumulative effective T, for subjects A and B,respectively. The data of
Fig. 42 show for Subject A a linear increase in error with increasing
time delay. There is a distinct difference in performance between the
low and high command gains which begins at the lowest effective time
delay configurations and diminishes as T increases. The lower rms
error for K, = 20 was noted in the previous plots but here it becomes
most noticeable that the gain influence decreases at the higher effec-

tive time delay values.

Figure 43 for Subject B also indicates a linear increase in tracking
error as controlled element effective time delay increases. However
this plot tends to bring out the wider spread in error due to a less

consistent tracking gain loop closure of Subject B as compared to

Subject A.

In summary, the rms tracking error measures show a linear degrada-
tion in performance proportional to an increase in overall controlled

element effective time delay.
2. Pilot Ratings

A summary plot of CHPR versus controlled element effective time
delay is presented in Fig. 44. This shows the mean and 1 o values
obtained by combining data from both subjects at each command gain. The
numbers beside the symbols indicate the number of runs involved. Not

only is the data very consistent (one half rating point 1 ¢ ranges), but
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this plot again shows the definite preference for the K, = 20 command

gain at T less than 0.19 sec.
3. Comparison With MIL-Spec Time Delay Criteria

It was noted in Section II-D-2 that the question has been raised as
to whether the time delay criterion of MIL-F-8785C should be referenced
to manipulator force or displacement (i.e., whether the feel system lag
should be included when the command input is manipulator displacement).
Figure 45 presents summary plots of average CHPR vs Te data including
the feel system lag (per 8785C) and excluding the feel lag (per Ref. 9).
Since results of this simulation show a sensitivity to command gain,
data are plotted for each gain separately and for the average of the
two. The upper plots reflect Kc = 10, the middle plots reflect Kc = 20,

and the lower plots the average for both gains. All plots reflect the
averaged CHPRs from Fig. 44.
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When the effective time delay is computed from force application
(therefore feel dynamics included), there is a steady progression of
increasing CHPR with increasing t which supports the -8785C Level 1
boundary but may indicate the boundary between Level II and III is too
conservative. On the other hand, when the feel dynamics are excluded in
the calculation of the effective time delay, two different CHPRs result
for each value of 1 and the ratings for the displacement sensing center
stick (shaded symbols) definitely do not fit the criteria boundaries.
The data are not consistent with the contention that the feel system
dynamic lag should be excluded when calculating the overall vehicle
effective time delay. It should also be noted that these results for
the center stick are not consistent with those of Fig. 32 for the side
stick. There was not so much difference in pilot rating between force

and displacement stick sensing for the side stick.

It seems obvious from these comparisons that the more appropriate
criterion is that of MIL-F-8785C which includes the feel lag contribu-
tion in the overall vehicle computed effective time delay when stick

displacement sensing is employed.

E. SUMMARY

This set of experiments was performed to obtain lab data for later
comparison with flight. Results of this limited simulation forcast that

for a center stick configuration in a roll tracking task:

® Torce sensing results in lower tracking error and
is rated better than displacement sensing.

® In the absence of appreciable command filter lag,
there is no difference in tracking performance or
pilot preference between feel system dynamics of
26 and 14 rad/sec.

® A 14 rad/sec command filter in series with a
26 rad/sec feel system has a decidedly adverse
effect on tracking error in comparison with a
26 rad/sec command filter and a 14 rad/sec feel
system, however it appears to make no difference
in pilot rating. (The latter probably is due to
the excessive total effective time delay for both
configurations).
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Pilot ratings obtained for effective time delays
up to 0.19 sec support the MIL-F-8785C criterion
which requires the time delay be referenced to
force applied to the manipulator regardless of
whether force or displacement sensing is used.
Results also fell within the 8785C Level I and II

boundaries.

72



SECTION VI

PILOT DYNAMIC MODEL WITH FORCE VS DISPLACEMENT CENTER STICK

It was shown in the previous section that stick displacement sensing
(feel dynamics in the forward path of Fig. 9) degraded CHPR an average
of 1 rating point compared to force sensing (feel dynamics in the feed-
back path). However, based on Refs. 8, 9 and other findings of the
previous section, there also is evidence that use of a comparatively
sluggish feel system does not degrade flying qualities ratings apprecia-
bly, providing there is little or no command filter lag in the outer

(tracking) loop path.

An explanation for the latter in the case of displacement sensing is
advanced in Ref. 9 by noting that closure of the limb/manipulator loop
via the pilot's arm joint receptors moves the open-loop feel dynamic
mode to higher frequency and therefore reduces the closed-loop effective
lag contribution of this dynamic element. Figure 46 presents an example
root locus plot for closure of the positional limb/manipulator loop of
Fig. 9 wusing typical 3rd order NM system parameter values and the
14 rad/sec, 0.07 damped, feel system dynamics. (The second order mode
above 40 rad/sec is the Pade' approximation for the time delays in the
forward and feedback paths of Fig. 9.) This locus shows the feel system
mode ‘moves to higher frequency and lower damping as loop gain is
increased. Conversely, the NM 2nd order mode moves to a lower frequency
but at lower damping. For the maximum stable gain shown, the closed-

loop feel mode moves to about 17 rad/sec.

Another possible explanation is that the feel system lag contribu-
tion is partially or totally compensated for by a change in the pilot's
central compensation (decrease in latency and/or generation of lead).
But, if the feel lag is offset by pilot appreciable lead generation,

then one might expect an accompanying degradation in flying quality

rating. This has not necessarily been noted.

In this subsection an attempt is made to shed light on the subject

by applying two different model fitting approaches to the data obtained.
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In the first, Y Yc describing function data from several typical center-

stick trackingpruns were fitted with transfer function models appro-
priate for the various elements in the loop. Parameter values for the
"known" control system and aircraft were considered fixed while values
for the '"unknown" pilot were adjusted until an adequate fit was
obtained. This approach appears to provide some of the needed inmsight
to the above uncertainties concerning high frequency mode contributions.
Additional insight is obtained by taking a much simplified crossover

model fit to identify dominant factors in the region of tracking loop

closure frequency.
A. HIGH ORDER DYNAMIC MODEL
The STI Describing Function Analyzer (DFA) program computationally

extracts opened-loop describing function amplitude and phase data from
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the closed-loop tracking task. Therefore it is appropriate to start
with known open-loop dynamic models and parameter values for the feel,
command filter, and aircraft elements and assume models and parameter
values for the pilot. The latter are then iterated until acceptable
fits are obtained to the amplitude and phase data points. Adjustments
to the feel dynamics are considered if adequate matches cannot be
obtained through this method. The example configurations which were
fitted are listed in Table 3. All included the 2nd order command
filter.

The matches to the describing function data points are presented in
Figs. 47 through 52. The transfer functions employed in the various
fits are included in each figure. It should be noted that the pilot NM
mode in each instance is modeled by second order rather than third order
dynamics. The first order lag is either beyond the frequencies employed
or is effectively canceled by the NM mode zero (see Egs. 1, 2, 3). 1In
some cases it is also necessary to include lead/lag terms in the pilot
model to achieve an adequate fit. In all cases excellent amplitude and
phase fits are achieved out through 14 rad/sec. At the highest fre-
quency (19 rad/sec) the amplitude data points generally are somewhat

higher than the models predict and the phase matches vary. This is not

TABLE 3. CONFIGURATIONS FITTED WITH HIGH ORDER MODELS

Plcure | covprc.| COMMAND | FEEL | GOMHAND | g o
47 Ey Force 26 14 A
48 Dy Force 14 26 A
49 Hoy Displacement 14 26 A
50 Gy Displacement 26 14 A
51 Hy Displacement 14 26 A
52 Hy Displacement 14 26 B
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too disconcerting as the forcing function amplitude is quite small at
this frequency and the closed-loop response power is also very low
allowing system noise and other sources of remnant to dominate. There-

fore there is considerably more scatter in the data at this frequency.

Comparison between the figures reveals the following:
1. Force Vs Displacement Sensing (Figs. 47, 48 vs 49, 50)

The fits to the force sensing configurations are shown in Figs., 47,
48. These configurations reflect command filters of 14 and 26 rad/sec
and gains of 10 and 20 deg/sec/lb, respectively. Both are characterized
by the absence of the feel dynamics lag. The pilot model counsists of a
time delay of 0.07 sec and the 2nd order NM mode at 12 rad/sec and 0.05
damping. In both cases excellent matches are obtained. The gain line
crossover with the amplitude fit (“b) is above 3 rad/sec, the phase
is

crossover (w,) is close to 5 rad/sec, and the phase margin at We

30 deg ian both cases. These were given CHPR ratings of 3 and 4.

Two matches to displacement sensing configurations in which the sub-
ject pilots did not employ lead/lag compensation are shown in Figs. 49,
50. These are characterized by the presence of the feel system lag
modeled with the open-loop parameter values. Figure 49 is for the 14
rad/sec feel, 26 rad/sec filter, and 10 deg/sec/lb gain. Figure 50 is
for the 26 rad/sec feel, 14 rad/sec filter, and 20 deg/sec/lb gain. In
both of these cases an excellent match is obtained with a pilot time
delay of 0.06 second 2nd order NM mode of 13 rad/sec and 0.07 damping.
Thus there 1is very 1little difference in the pilot model parameters
between this displacement and the previous force sensing fits. But it
will be noted that the amplitude crossover is barely 3 rad/sec in both
of the displacement stick cases, the phase crossover is 1less than
4 rad/sec, and the phase margin is 20 deg or less. These elicited CHPR

ratings of 5 and 6.

It should be pointed out that the two force and the two displacement
sensing cases shown represent an interchange of feel and command filter
dynamic lag values. In these examples there obviously is no iunfluence

on the pilot model or parameter values.

82




2. Pilot Generation Of Lead

Although the interchange of the 14 and 26 rad/sec dynamic elements
had little influence, there was considerable evidence in the describing
function amplitude and phase data that the additional phase lag of the
two elements caused the subjects to adopt lead/lag compensation in many
runs with the displacement sensing stick. Two of the more extreme exam-—
ples of this behavior are presented in Figs. 51, 52. Figure 51 shows
Subject A adopted a lead at 3 rad/sec and lag at 10 rad/sec. His cen—
tral latency increased to 0.1l sec but there was no change in his
NM mode. This particular set of runs indicates gain crossover very near
to the phase crossover frequency (zero phase margin), a PIO condition.

It resulted in a CHPR of 5.

Another set of example runs for the same controlled element but with
Subject B is presented in Fig. 52, This was again fit with a lead at
3 rad/sec but a lag at 17 rad/sec. Note that this resulted in a little
too much phase lead in the region around crossover. Thus a slightly
higher lead break would probably produce a better match. This Subject
also increased his central latency to 0.11 sec and reduced his NM mode
to 11 rad/sec, 0.03 damping. The equalization increased the phase
crossover (w,) to almost 5.5 rad/sec but the accompanying increase in
amplitude ratio at frequencies above 3 rad/sec caused a gain regression
which resulted in an amplitude crossover of only 2.5 rad/sec. Also the
amplitude peaking of the NM mode is greater than in any of the previous
plots. Despite these adverse influences, the Subject gave the configu-
ration a CHPR rating of 4. Quite possibly this is due to the phase mar-

gin at gain crossover being increased to about 60 deg.

In both Figs. 51, 52 it is apparent the adoption of lead causes a
flattening of the amplitude ratio plot in the region of desired cross-—
over (e.g., 2.5 to 4 rad/sec) and therefore non-K/s like characteristic.
This results in increased sensitivity of crossover frequency and/ or
phase margin to pilot gain and may help to explain the Level II ratings

given to these configurations in Fig. 41.
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3. Summary

Results of these higher order mode data fits have shown no apprecia-
ble difference in pilot model form or parameter values for configura-
tions in which the dynamic lag contributions of the feel and command
filter elements were interchanged. Presence of the 14 rad/sec 2nd order
lag (either feel or filter) with a displacement sensing stick either
reduces closed-loop bandwidth and phase margin (if Yp is unchanged from
the force sensing cases) or induces the pilot to adopt lead/lag compen-—
sation in an attempt to improve bandwidth and phase margin. The latter
results in an offsetting increase in pilot central latency and increased

sensitivity of closed-loop performance to pilot gain.

Excellent high order fits have been obtained over the entire
frequency range through the use of feel system parameter values repre-
sentative of open—-loop limb/manipulator characteristics. This tends to
indicate that the 1limb/manipulator position loop is not closed suffi-
ciently tight to appreciably modify either set of dynamic characteris-

tics.
B. CROSSOVER MODEL APPROACH

The foregoing high order models provide excellent fits to six
example cases but one might question whether these results are represen-—
tative of all 105 describing function data runs. Detailed fits to
accommodate the nuances of all rumns could not be accomplished within
time and budget constraints. Therefore the much simpler crossover model
approach was employed. This approach focuses on the region around
crossover (w;) since this is the region which dominates the pilot's per-
ception of system performance (e.g., bandwidth, phase margin, gain

margin, need for lead compensation).

In this simplified model the 1lag contribution of all higher
frequency dynamic modes are approximated by the summation of their
equivalent time delays (see Fig. 53). The describing function data

points reflect the total open-loop pilot/feel/filter/aircraft system,
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YpYFSYCFYc' Since the dynamic parameters of YCFYc are known, the equiva-
lent time delay contribution of these elements can be subtracted and the

residual for the unknown YpYFS is left. The average values for the

"residuals" from the 105 data runs are indicated below for the force and

displacement sensing sticks.

T, (sec) wpg (rad/sec) (tp + wg) | wrs
0.076 14 0.125 14
0.08 26 0.105 26
Force Force Displacement
—e ] Yp T Yp Sam— YFS ——
Yrs
Force sensing sticks Displacement sensing sticks

For the force stick the residual consists of the pilot effective
time delay Tpe The values obtained with the 14 and 26 rad/sec feel
dynamics are essentially the same. 1f we calculate the total effective

pilot time delay based on the high order model of Figs. 47, 48 we

obtain:

2TNM

Tp lLNM

~ 2(0.07)
0.07 + 5

0

0.082 sec
This is within about 5 percent of the average of the two values noted

above. Thus the higher order model fit derived for the force sensing

stick is consistent with all force sensor runs.
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For the displacement sensing stick the residual reflects the pilot

and feel dynamics (Tp + Tpg)e If we calculate the total effective time

delay using the dynamic models of Figs. 49, 50 with the l4 rad/sec feel
system we obtain:

2g 2
Te = T, +- AN _EE§
P WNM wES

~ 2(0.07) . 2(0.7)
= 0.06 + o 4+ S

0.06 + 0.0108 + 0.1
= 0.1708 sec

This is about 37 percent higher than the 0.125 sec extracted from the
data runs. If the difference (0.0458 sec) were to be attributed to a
shift in the feel system frequency and damping due to closure of the

pilot limb/manipulator loop, it would require nearly doubling the feel
system frequency. This
Fig. 46.

is not 1likely based on the root locus of
On the other hand, the differential could be accounted for by
a relatively modest first order pilot lead/lag. This also is consistent
with the phase plots of Figs. 49, 50 where it can be noted that the

describing function data points are about 10 deg above (lead) the fitted

curve over a small range at, and slighly above, the crossover frequency.

A similar calculation of the effective time delay with the 26 rad/
sec feel system shows:

_ 2(0.07) 2(0.7)
Te 0.06 + 13 + 76

0.06 + 0.0108 + 0.055
0.1258 sec

This is about 20 percent higher than the 0.105 sec from the data runs.

Again this can be accounted for by a small pilot lead.

Thus it appears the subject pilots were consistently adopting lead
to partially offset the lag introduced by the displacement sensing stick
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configuration. But the lead time constant is so small that it may not

adversely effect the handling quality rating.
C. ROLL RATCHET POTENTIAL

Consistent with the side-stick portion of the experiment, it is of
interest to look at the roll ratchet potential for the center-stick con-
figurations. A comparison of the typical phase lag data points in the
vicinity of the NM frequency in Figs. 47 through 52 with the similar
phase data points of Fig. 18 (sidestick) shows the controller/aircraft
configurations used with the center-stick have much greater phase lag
and therefore definitely are unot candidates for roll ratchet. This
excess lag is due to the cumulative effect of the command filter, the
aircraft roll subsidence (TR = 0.15 sec), and the feel system lag (with

displacement sensing).
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SECTION VII

CONCLUSIONS AND RECOMMENDATIONS

Results of the experiments discussed herein together with those of
Ref. 11 provide insight to key interactions between the pilot s neuro-
muscular system and the manipulator, feel system, control response com-
mand gain, and command prefilter elements in roll tracking type control
tasks. The relative merits of stick displacement command versus stick
force command have been quantified in terms of effective time delay,
maximum control bandwidth, tracking performance, low and high frequency
PI0 tendency, pilot's neuromuscular mode peaking, etc. Potential trade-
offs between response command gradient (gain), feel system force/
displacement gradient, and effective time delay have been noted. The
overall results provide insight and design guides for minimizing roll
control problems in future high performance aircraft. Specific conclu-

sions are:
© Manipulator Force Vs Displacement Sensing
0 Force Sensing

-— Minimizes forward 1loop dynamic lag
because the manipulator/feel system lag
is relegated to the feedback path of the
pilot's neuromuscular limb position
system

-—- Results in lower tracking error in the
simulation task

-- Minimum phase lag plus the associated
decrease in signal attenuation at fre-
quencies near the neuromuscular mode
amplitude peak increases susceptibility
to roll ratchet

-- Command prefiltering is generally
required to prevent roll ratchet and
other high frequency extraneous inputs

—-- Caution must be exercised in selecting

the prefilter time constant because
excessive lag leads to low frequency PIO
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-- As a rule of thumb, the prefilter inverse
time constant should be double the
closed-loop control bandwidth required.

9 Displacement Sensing

-— Moves the manipulator/feel system dynamic
characteristics to the forward loop com-
mand path

-~ 1Increases (slightly) the neuromuscular
mode peaking over that obtained with
force sensing

~~ Increases high frequency phase lag and
command attenuation

~- Reduces or eliminates any tendency to
neuromuscular system induced roll ratchet
if the manipulator/feel system dynamics
lie in the region of the neuromuscular
system 2nd order mode

-- Reduces or eliminates the need for com-—
mand prefiltering

-— As a rule of thumb, the manipulator/feel
system principal dynamic mode should be
greater than the pilot's neuromuscular
mode (approximately 12-13 rad/sec) to
avoid adverse effect on tracking perform-
ance and flying qualities rating

® Side-~ vs Center -Stick
-— The above apply equally to both types
® Response Command Gradient (Gain)

-- All results (side- and center-stick)
showed a preference for command gain of
about 20 deg/sec/lb in both tracking and
gross maneuvering in the simulation

-- Based upon comparison with previous NT-33
flight experiments, it appears 10 deg/
sec/lb 1is more appropriate for actual
flight with small precise coantrol input
tasks (formation, tracking) but the
20 deg/sec/1b remains appropriate for
gross maneuvering
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2 Feel

Command gains of less that 10 deg/sec/lb
result in rapid degradation in control
performance (bandwidth, tracking error)
and flying qualities rating due to the
high forces involved

Degradation of CHPR with increasing
effective time delay was less with com-
mand gain of 20 deg/sec/lb than with
10 deg/sec/1b

System Force/Displacement Gradient (for

side-stick)

0.65 1lb/deg was rated best for precise
tracking and following gross attitude
changes

1.22 1b/deg was found to be stiff and
tiring

0.33 1b/deg was too soft, producing a
tendency to excessive stick deflection

Based upon flight test in the NT-33, it
appears that gradients as high as
1.33 1b/deg may be acceptable in the
presence of motion and atmospheric
disturbances

® Manipulator/Feel System Dynamics

In the absence of appreciable command
filter lag, there appears to be no dif-
ference in tracking performance or pilot
preference (CHPR) between feel system
dynamics as low as 14 rad/sec and
26 rad/sec.

° Feel/Command Filter Effective Time Delay

Flying quality rating degradation with
increasing 7, was found to be consistant
with the criterion of MIL-F-8785C with
both the side- and center-stick config-
urations although there is some indica-
tion the Level T and I1 boundaries could
be relaxed somewhat (especially for the
side-stick)

Sensitivity to T, decreased as command
gain (Kc) increased
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The distribution of principal lag between
feel and command prefilter has essen-
tially no influence on flying quality
rating but tracking performance measures
show preference for the lessor lag being
located in the command filter

Manipulator Configuration (side—- vs center-stick)

Use of the side-stick resulted in signi-
ficantly higher closed-loop control band-
width and lower tracking error in the
roll tracking task simulated, however,
there was no significant differvence in

pilot rating
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APPENDIX A

TRACKING STATION AND FEEL SYSTEM SET-UP

A sketch of the tracking station set-up with the right hand side-
stick is presented in Fig. A-1. Key dimensions, angles, pivots, etc.,
are identified. It should be noted especially that the stick grip
orientation was set to maximize comfort and minimize cross—axis coupling
(although the experiment task was single axis). The center-stick set-up
was essentially the same except for location of the stick and its pivot

near the floor.

Manipulator/feel system force-displacement calibration plots are
contained in Figs. A-2 through A-5. Also shown in each figure is a time
trace of stick displacement to a step force release, i.e., the stick was

held to one side and then the force released.

The force-displacement gradients shown here reflect measurements
made at the top of the stick (for convenience). In the main text the
side-stick gradients are referenced to the center of the grip for com-
parison with similar data from referenced experiments. The conversion

is:

top of stick (1b/in) | center of grip (1b/deg)

6.39 1.22
3.44 0.65
1.71 0.33

When using the force sensing stick configurations it is necessary to
incorporate a force signal deadboard (breakout) which matches the force-
displacement breakout of the feel system. A calibration plot for this

feature is presented in Fig. A-6.
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APPENDIX B

ANALOG COMPUTER CODING

The roll tracking controlled element dynamics were implemented on an
EAI-231-R analog computer. The computer coding diagram from the
McFadden force loader analog signal inputs through to the display and
strip chart recorder outputs is presented here. Also shown are the
forcing function inputs from the digitally generated sum of sine waves
and the various signals fed to the analog to digital (A/D) conversion

for calculation of performance metrics and describing functions.
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APPENDIX C

EXPERIMENT DATA

1. Closed-Loop Performance Measures

Open and closed-loop describing function measures and parameters are

calculated at the conclusion of each experiment run. Summary tables of

closed~loop performance measures, interpolated open-loop describing

function parameters, and experiment configuration parameter values

across all experiment runs are contained in Table C-1 (center-stick

experiment) and Table C-2 (side-stick experiment). The open and closed-

loop parameters extracted are based on the extended crossover model

(Ref. C-1) where the plant is assumed to be of the form

, ke m M)

S

wC
Amplitude \\
o / 0dB

(dB)

Phase

d

(deq) -180
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in the region of the crossover. A best "fit" to the describing function

amplitude and phase data points for each run is made and the resulting

plant and loop closure parameter extracted. These are identified in the

table (and sketch) as follows:

ALPHA

CBAR

CHPR

CSIG

EBAR

ESIG

GM

PML

SLOPE

Tau

TE

plant open-loop low frequency phase droop parameter from
the exponential a/w

average manipulator deflection during the data run
(identifies any trim bias)

Cooper-Harper Pilot Rating given for run

one sigma rms value for manipulator deflection during the
run

average roll error in tracking run
one sigma rms roll tracking error
force sensing stick (experiment configuration)

Bode open-loop gain margin at frequency of 180° phase
crossover, u,; computed from straight line interpolation
between describing function amplitude data points imme-
diately above and below computed wy

Response command gain (experiment configuration)

position (displacement) sensing sticks (experiment
configuration)

Bode open-loop phase margin at frequency of closed-loop
gain crossover, W, ; computed from the complete extended
crossover model

Bode open-loop phase margin at frequency of closed-loop
gain crossover, w,; computed from a straight line interpo-
lation between the two describing function data points

immediately above and below We

slope of Bode open-loop amplitude asymptote between two
data points immediately above and below gain crossover
frequency

equivalent time delay set into effective controlled element

plant open-loop high frequency time delay parameter from
the exponential Tw
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wC

WF

WS

first order lag time constant set into effective controlled
element (represents aircraft roll subsidence mode or first
order command prefilter)

crossover frequency - frequency of crossover between open-—
loop O db line and Bode amplitude asymptote calculated from
straight line fit between two describing function data
points immdiately above and below crossover

command filter frequency (second order) (experiment
configuration)

feel system (stick) frequency (second order) (experiment
configuration)

unstable frequency - frequency at which system open-—loop
phase plot crosses the 180 deg line (calculated from
complete extended crossover model

2. Ych Describing Function Plots

The remainder of Appendix C contains the computer generated opened-

Y
loop P

Y. plots for all experimental runs. Runs 0lAl through 8Al4l were

with the center-stick. Runs 15A142 through 22A379 reflect the side-

stick manipulator with the various feel system gradient, filter, and

time delay configurations.

3. Reference

c-1

Jex, Henry R., R. Wade Allen, and Raymond E. Magdaleno, Display

Format Effects on Precision Tracking Performance, Describing

Functions, and Remnant, AMRL-TR-71-6, Aug. 1971.
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